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IMPORTANCE OF HERITABILITY STUDIES

I Are brain traits environmentally or genetically determined?
I Create images of overall genetic effects.
I Classic twin designs [Fisher, 1919] important for future molecular genetic

studies [Van Dongen et al., 2012].
I Heritability of brain and psychological disorders: 0.93 for bipolar

[Kieseppä et al., 2004], 0.82 schizophrenia [Kendler, 2001], 0.74
Alzheimer’s [Gatz et al., 1997], 0.25-0.76 multiple sclerosis
[Hawkes and Macgregor, 2009], 0.33 major depression [Kendler, 2001].

I Here we study healthy young adults to understand heritability of brain traits.
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ACE MODEL

Fisher’s model for polygenic effects on a phenotype:
Additive genetic, Common environmental, and unique Environmental

I No dominant effects (non-additive), gene-gene interaction (epistasis), or
gene-environment interaction.

I No assortative mating.

Figure: Path diagram for the SEM. MZ: monozygotic. DZ: dizygotic. Heritability defined as σ2
a/(σ

2
a + σ2

c + σ2
e ).
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Figure: Source: Introduction to Freesurfer. In HCP preprocessed data, Freesurfer is used to delineate cortical
thickness for 0.7 mm voxels.
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Figure: Source: Introduction to Freesurfer.
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SURFACE REGISTRATION: VERTICES

Figure: Source: Introduction to Freesurfer.
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DATA EXAMPLE

Figure: Cortical thickness (mm) in the left hemisphere from subject 101006 from the Human Connectome Project.
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IMPORTANCE OF CORTICAL THICKNESS

I Cortical thickness is important to intelligence [Karama et al., 2011].
I Cortical thinning is associated with dementia [Dickerson et al., 2009].
I Cortical network: correlations between cortical thickness.
I Abnormalities in cortical networks have been associated with psychiatric

disorders such as depression [Wang et al., 2016].
I Develop an atlas of genetic patterning in cortical thickness.
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STRUCTURAL NETWORKS IN THE LITERATURE

Figure: Genetic correlations from a seed in the middle frontal gyrus (Figure 3 in [Rimol et al., 2010]) and structural
networks [Chen et al., 2013].
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SHORTCOMINGS OF CURRENT METHODS

I Previous approaches: massive bivariate approach [Rimol et al., 2010] with
large bias from smoothing.

I Recent improvements for small data: [Luo et al., 2017] FSEM for linear
space, 93 locations, 300 subjects.

I [Luo et al., 2017] estimate a symmetric function rather than PSD.
I Problematic when V >> N, ultra-high dimensional setting.
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FSEM
[Luo et al., 2017]: Functional structural equation model (ACE) for v ∈ [0, 1]:

yij(v) = X′ijβ(v) + Rij(v),

Rij(v) =
[
{1− 1lDZ(i)}+

√
0.51lDZ(i)

]
ai(v)

+
√

0.51lDZaij(v) + ci(v) + eij,G(v) + eij,M(v),

with

ai(v) ∼ (0,Σa(v, v)),

aij(v) ∼ (0,Σa(v, v))

ci(v) ∼ (0,Σc(v, v))

eij,G(v) ∼ (0,Σe,G(v, v))

eij,M(v) ∼ (0, σ2
e,M(v)).

Measurement-error corrected heritability:

h2(v) = Σa(v, v)/(Σa(v, v) +Σc(v, v) +Σe,G(v, v))
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SYMMETRIC FUNCTION FROM [LUO ET AL., 2017]

Ûijv0v′0 = Rijv0 Rijv′0

Ûiv0v′0 = 0.5
(
Ri1v0 Ri2v′0 + Ri1v′0 Ri2v0

)
Class of symmetric functions, optimization independent for each pair {v, v′}:

Jn(v, v′) =

(self)
1
N

n∑
i=1

mi∑
j=1

∑
v0 6=v′0

{
Ûijv0v′0

−Σa(v, v′)−Σc(v, v′)−Σe,G(v, v′)
}2

kh(v0 − v)kh(v′0 − v′)

(MZ) +
1
n1

n1∑
i=1

∑
v0 6=v′0

{
Ûiv0v′0

−Σa(v, v′)−Σc(v, v′)
}2

kh(v0 − v)kh(v′0 − v′)

(DZ) +
1
n2

n1+n2∑
i=n1+1

∑
v0 6=v′0

{
Ûiv0v′0

− 0.5Σa(v, v′)−Σc(v, v′)
}2

kh(v0 − v)kh(v′0 − v′).

BRisk – Heritability in Neuroimaging 12



CONTRIBUTIONS

I COVariance Function Estimation in the Functional structural Equation
model for spatial domains in high dimensional setting: 60,000 locations
with 1094 subjects.

I COVFEFE
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CONTRIBUTIONS

I COVariance Function Estimation in the Functional structural Equation
model for spatial domains in high dimensional setting: 60,000 locations
with 1094 subjects.

I PSD-ACE

I Automate smoothing via geodesic kernels.
I Improve estimates of heritability.
I Create an atlas of the genetic and environmental networks.
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NEW ESTIMATORS WITH POSITIVE SEMI-DEFINITE CONSTRAINTS

I PSD estimators: truncating to positive eigenvalues should decrease MISE,
also allows prediction.

I However, we found that this leads to huge bias!
I Derive alternative estimators. Let Σa(v, v′) = (za

v)
Tza

v′ , and
Σc(v, v′) = (zc

v)
Tzc

v′ , and Σe,G(v, v′) = (ze,G
v )Tze,G

v′ .
I Here, za

v ∈ Rn1+n2 ; let Û∗ijv0v′0
= Ûijv0v′0 − {1lv0=v′0}σ̂

2
e,M(v0).

J PSD = argmin
Za∈RV×da ,Zc∈RV×dc

(self)
1
N

∑
i,j

∑
v,v′

∑
v0,v′0

{
Û∗ijv0v′0

− (za
v)

T za
v′ − (zc

v)
T zc

v′ − (ze,G
v )T ze,G

v′

}2
kh(v0, v)kh(v′0, v′)

(MZ) +
1
n1

n1∑
i=1

∑
v,v′

∑
v0,v′0

{
Ûiv0v′0

− (za
v)

T za
v′ − (zc

v)
T zc

v′

}2
kh(v0, v)kh(v′0, v′)

(DZ) +
1
n2

n1+n2∑
i=n1+1

∑
v,v′

∑
v0,v′0

{
Ûiv0v′0

− 0.5(za
v)

T za
v′ − (zc

v)
T zc

v′

}2
kh(v0, v)kh(v′0, v′)

I Information: (1) psd; (2) smoothness.
I Decomposition Σa = ZaZT

a not unique, but in practice convergence is not an issue.
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LCR WITH POSITIVE DEFINITE CONSTRAINTS

I Costly objective function, O(V4), greater than 1.3× 1019!
I We can not evaluate the objective function.
I Remarkably, we can optimize it.
I We derived a gradient-descent algorithm.
I Parameter space dramatically reduced because rank is n1 + n2 (229) for Σ̂a,

Σ̂c, and N − n1 (943) for Σ̂e,G.
I Initialize with truncated symmetric, “Sandwich” estimator.
I Updates are O(V2N).

I Proposition
Σ̂a is psd in the sense that for any v ∈Mp, x ∈ Rp, xTΣ̂a(v, v)x ≥ 0.
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GRADIENT DESCENT FOR COVARIANCE ESTIMATION

Input: The N × V data matrix Y and design matrix X; tolerance ε, 0.0001; step
size λ, 0.001.
Result: Σ̂PSD−ACE

a , Σ̂PSD−ACE
c , and Σ̂PSD−ACE

e,G .

1. Estimate measurement error, σ̂e,M , and residuals, R̂, using SMLE with
input Y and X.

2. Calculate Σ̂S−SW
a , Σ̂S−SW

c , and Σ̂S−SW
e,G in which the bandwidths are chosen

using GCV. These bandwidths will be used in subsequent estimators.
3. Choose the rank da based on the scree plot for Σ̂S−SW

a . Use the selected
eigenvalue-eigenvector pairs to generate an initial value Z(0)

a . Repeat this
process for Z(0)

c and Z(0)
e,G.

4. Calculate ∇(0)
a ,∇(0)

c , and ∇(0)
e,G using the initial values and calculate

α =
√
||∇(0)

a ||2F + ||∇(0)
c ||2F + ||∇(0)

e,G||2F.

5. While
√
||∇(n)

a ||2F + ||∇(n)
c ||2F + ||∇(0)

e,G||2F > εα, increment n and calculate

Z(n)
a = Z(n−1)

a − λ∇(n−1)
a , and similarly for Z(n)

c and Z(n)
e,G.

6. Calculate the covariance functions.
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SIMULATIONS: COVARIANCE FUNCTIONS

I Construct Σa, Σc, and Σe,G from sixth order even spherical harmonics (28
functions).

I For 100 MZ, 100 DZ, 200 singletons, simulate GP at 1002 locations
I Scaled to match empirical estimates from HCP analysis, resulting in

heritability ranging from 0.016 to 0.498 with mean equal to 0.126.
I σ̂2

e,M spatially varying, average 0.03.
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SIMULATION RESULTS
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VISUALIZING BIAS IN HERITABILITY

Figure: Estimates of h2(v) averaged across 1,000 simulations.
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VARIANCES AND HERITABILITY

0.0

0.5

1.0

1.5

2.0

MLE MWLE SMLE S−FSEM S−SW PSD−ACE−O PSD−ACE
Method

M
IS

E

Source

Bias−sq

Variance

a) σ̂a
2

0.0

0.5

1.0

MLE MWLE SMLE S−FSEM S−SW PSD−ACE−O PSD−ACE
Method

M
IS

E

Source

Bias−sq

Variance

b) σ̂c
2

0.0

0.4

0.8

1.2

MLE MWLE SMLE S−FSEMPSD−FSEM S−SW PSD−SWPSD−ACE−OPSD−ACE
Method

M
IS

E

Source

Bias−sq

Variance

c) σ̂
2

e,G

0

50

100

MLE MWLE SMLE S−FSEMPSD−FSEM S−SW PSD−SWPSD−ACE−OPSD−ACE
Method

M
IS

E

Source

Bias−sq

Variance

d) heritability

●●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

● ●●

●

●

10

100

MLE MWLE SMLE S−FSEM PSD−FSEM S−SW PSD−SW PSD−ACE−OPSD−ACE

IS
E

e) heritability

BRisk – Heritability in Neuroimaging 21



CONCLUSIONS FROM SIMULATION STUDIES

I PSD-ACE results in much lower MISE for heritabilities, variances, and
covariances

I It does introduce some bias.
I Howevever, heritability is less biased than the MLE and MWLE.
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HCP ANALYSIS

I HCP: map all structural and functional connections in the healthy brain.
I Preprocessed data from HCP [Glasser et al., 2013]: cortical thickness

estimated using FreeSurfer.
I 1094 subjects, 595 females; 151 MZ pairs, 78 DZ pairs.
I No direct smoothing.
I Age: 28.8± 3.7.
I Assessed covariates: gender, age, handedness, height, weight, BMI, ICV.
I Kept gender, age and ICV.
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DISTANCES ON THE CORTICAL MANIFOLD

I We use biweight kernels with geodesic distance in the group template
32k_fs_LR.

I Distance between hemispheres is infinite.
I Only affects the local smoothing – long-distance correlations learned from

data.
I GCV selected bandwidths are very small: bw=1.3, average weights are

0.878, 0.044, 0.044, 0.015, 0.015, 0.002, and 0.002.
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STRATEGY FOR VERY BIG DATA

I Calculations involve four V × V dense matrices, plus other memory usage.
I We have estimated the model for the HCP data using HPC with 3 TB of

RAM.
I Also have code with a divide and conquer approach: allows the use of high

resolution atlases on personal computers.
I Divide and conquer may work for smoother data, e.g., fMRI?
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HERITABILITY MLE ESTIMATES: σ2
a(v)/(σ

2
a(v) + σ2

c (v) + σ2
e (v))
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HERITABILITY PSD-ACE ESTIMATES: σ2
a(v)/(σ

2
a(v) + σ2

c (v) + σ2
e,G(v))
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HERITABILITY ESTIMATES: RECENT LITERATURE

Figure: Heritability estimates from [Shen et al., 2016].
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COMPARISON WITH LITERATURE

Figure: Genetic correlations from a seed in the middle frontal gyrus (top: Figure 3 in [Rimol et al., 2010]; bottom:
PSD-ACE).
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STRUCTURAL CONNECTIVITY IN GENETIC COMPONENT, MEDIAL LOCATIONS
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HUB VERSUS ISOLATED IN GENETIC COMPONENT
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DISCUSSION

I Average heritability was 0.28 in PSD-ACE (max 0.43) versus 0.09 (max
0.55) in MLE. Mostly due to PSD constraints.

I Automated smoothing using GCV – chooses small bandwidth.
I We present a data-principled approach to determine the bias-variance

trade-off.
I We developed the first atlas of genetic patterning in cortical thickness

networks.
I Future work: predict the genetic effects in individuals, which can then be

related to the genetic components of behavior.
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INFINITE DIMENSIONAL PROBLEM

Uijv0v′0
= Rijv0 Rijv′0

Uiv0v′0
= 0.5

(
Ri1v0 Ri2v′0

+ Ri1v′0
Ri2v0

)

argmin
Σa,Σc,Σe,G:M7→F+

1
N

n∑
i=1

mi∑
j=1

∫
v,v′∈M

∑
v0 6=v′0

{
Ui,j,v0,v′0

−Σa(v, v′)−Σc(v, v′)−Σe,G(v, v′)
}2

kh(v0, v; v′0, v′)dM

+
1
n1

n1∑
i=1

∫
v,v′∈M

∑
v0,v′0

{
Ui,v0,v′0

−Σa(v, v′)−Σc(v, v′)
}2

kh(v0, v; v′0, v′)dM

+
1
n2

n2∑
i=1

∫
v,v′∈M

∑
v0,v′0

{
Ui,v0,v′0

− 0.5Σa(v, v′)−Σc(v, v′)
}2

kh(v0, v; v′0, v′)dM.
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LINEAR COMBINATIONS OF SAMPLE COVARIANCES

I “Sample” covariances

All: S0 =
1
N

(
RTR

)
MZs: S1 =

1
2n1

(
RT

11R12 + RT
12R11

)
DZs: S2 =

1
2n2

(
RT

21R22 + RT
22R21

)
.

Define simple estimators

Sa = S0 + S1 − 2S2 + diag S1 − diag S0

Sc = 2S2 − 0.5S0 − 0.5S1 + 0.5 diagS0 − 0.5 diagS1.

I Create PSD estimates S+
a and S+

c by calculating EVD and truncating
eigenvalues. Low rank.
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SANDWICH FORMULATION OF LOCAL CONSTANT REGRESSION

I [Xiao et al., 2013] use sandwich formulation of covariance estimation using
bivariate P-splines, KSKT .

I Facilitates use of GCV:

GCV(h) = ||(kh ⊗ kh) vec(S)− vec(S)||2/(1− tr(K⊗K)/V2)2

I For twin studies, we have multiple covariance functions to estimate.
I We propose the sandwich formulation of local constant regression

estimators.
I Define K such that Kk,l = kh(vk, vl)/

∑V
l=1 kh(vk, vl). Then

Σ̂LCR
a = KS+

a KT (1)

Σ̂LCR
c = KS+

c KT . (2)

I Smooth eigenvectors only: (KΨa
+)Λa

+(Ψa
+TKT).
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VISUALIZING BIAS IN GENETIC COVARIANCE

Figure: Average across 1,000 simulations of Σ̂(t)
a (·, v) for the function evaluated at 1,002 locations for a randomly

selected seed location (v = 888).
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VISUALIZING BIAS IN GENETIC COVARIANCE

Figure: Average across 1,000 simulations of Σ̂(t)
a (·, v) for the function evaluated at 1,002 locations for a randomly

selected seed location (v = 755).
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AVERAGE OF COVARIANCE ESTIMATES ACROSS SIMULATIONS.

Figure: Examining bias. Covariance estimates of Σa averaged across simulations.
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VISUALIZING BIAS IN GENETIC VARIANCE

Figure: Examining bias. Estimates of σ2
a(v) averaged across 1,000 simulations.
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GEODESIC DISTANCES

Alternatives to great circle distance:
1. geodesic distance along a group-averaged cortex

I not advised because folding patterns are averaged resulting in a smoothed
surface with distances affected in undesirable ways

2. registered individual surfaces
I unclear if it would improve or degrade performance
I creates additional mathematical and computational challenges.
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