

CBIS
Center for Biomedical Imaging Statistics

JIVE Integration of Behavioral and FMRI Data

Qunqun Yu*, Benjamin Risk*, Kai Zhang*, J. S. Marron*

*Presenting author. Biostatistics & Bioinformatics, Emory University, Atlanta, GA

brisk@emory.edu

*Department of Statistics and Operations Research, University of North Carolina, Chapel Hill

Goal

- Scientific question: how does behavior relate to brain activity?
- Statistical problem: decompose two or more datasets into
 - joint + individual + noise
- Pressing problem in big data:
 - Genomics and cancer research: Gene expression, copy number, mutations
 - Neuroimaging: Combine imaging modalities, behavior, genetics

Popular approaches

- Canonical correlation analysis: issues when $d_1 > n$ or $d_2 > n$
- Partial least squares:

$$\operatorname{argmax}_{a_1,a_2} \sqrt{\operatorname{Var}(a_1'X_1)\operatorname{Var}(a_2'X_2)} \operatorname{Corr}(a_1'X_1,a_2'X_2)$$

- Challenges when $d_1 \gg d_2$
 - 1. Unit variance: X_1 dominates
 - 2. Standardize by energy: X_2 dominates
- Joint & Individual Variation Explained

History of JIVE

- 1. Eric Lock, Katherine Hoadley, Steve Marron, Andrew Nobel. Joint and Individual Variation Explained (JIVE) for integrated analysis of multiple data types. *Annals of Applied Statistics*. 2013.
- Qing Feng, Jan Hannig, Meilei Jiang, and Steve Marron. Angle-Based Joint and Individual Variation Explained. In review.
- 3. Qunqun Yu, Ben Risk, Kai Zhang, and Steve Marron. JIVE integration of imaging and behavioral data. *Neurolmage*. 2017.

JIVE Data Structure

- Multiple Matrices
- Here, we focus on K=2

 d_1, d_2 = number of variables (i.e. features)

n = number of cases(i.e. subjects or samples)

JIVE model

$$\bullet X_1 = A_1 + E_1 = J_1 + I_1 + E_1$$

$$\bullet X_2 = A_2 + E_2 = J_2 + I_2 + E_2$$

• Focus on score subspaces of \mathbb{R}^n :

1.
$$row(J_k) = row(J) \subset row(A_k), k = 1,2$$

2.
$$row(I) \perp row(I_k), k = 1,2$$

3.
$$I_1 \cap I_2 = 0$$

• *E*_k is isotropic

Toy example

Toy example, cont.

Toy example

- JIVE accurate
- Not estimated in PLS

6

8

-20

0

20

JIVE Schematic

Joint Subspace

- Principal Angle Analysis developed for JIVE by Feng et al
- Theoretical Version:

$$\ln \mathbb{R}^n, \quad \mathsf{Row}(V_{J1}) = \mathsf{Row}(V_{J2})$$

Empirical Version:

In
$$\mathbb{R}^n$$
, Row $(\hat{V}_{J1}) \approx \text{Row}(\hat{V}_{J2})$

PAA

- •Stack RSV of SVDs of A_1 and A_2
- Take another SVD, those RSVs are the averages of matched noisy directions
- •Largest σ_m correspond to smallest PA:

$$\theta_m = a\cos(\sigma_m^2 - 1)$$

- Threshold with bounds determined from:
 - 1. Wedin's sin thm bounds PA for $J_k + E_k$,
 - 2. Assumption of isotropy,
 - 3. Sample noise directions to get thresh for θ_m .

HCP Overview

- Analyzed 487 subjects from the Human Connectome Project
- Three analyses differing in imaging:
 - 1. Case 1: Large WM signal in imaging
 - 2. Case 2: Weak WM signal
 - 3. Case 3: No WM signal
- Same behavior dataset in 3 cases
 - Large WM signal in behavior

Behavior Data

- Behavior: 139 x 487 subjects
- NIH toolbox, in-task working memory, others

Normalized with shifted log transform (Feng

Imaging Data

- HCP estimated activation from two runs of same task for variety of tasks
- Z-stat subject images: 91,282 x 487

Case 1: strong working memory signal 2 bk – 0 bk contrast (faces, places, tools, body parts)

Case 2: weak working memory signal 2 bk tool main effect

Case 3: no working memory signal right hand motor task

Application: HCP

Case 1: strong working memory signal 2 bk – 0 bk contrast

Preprocessed behavioral data for one participant

The processed behavioral data for one participant

The pro

Case 2: weak working memory signal 2 bk tool main effect

Case 3: no working memory signal right hand motor task

Imaging & behavior

Permutation test

- PAA: joint rank based on bounds
- Is joint subspace significant?
- We define a permutation test:
 - -Permute subject in behavior data
 - -Perform JIVE on imaging and permuted behavior to generate new estimate, $\tilde{J}_1^{(t)}$
 - -Calculate energy of $\tilde{J}_1^{(t)}$

Case 1: strong WM

Case 1: strong working memory signal 2 bk – 0 bk contrast

NIH Cognition

WM accuracy

WM response time

Case 1: Zoomed in

Case 2: weak WM

Case 2: weak working memory signal 2 back tool main effect

Less contrast

Case 3: Unrelated

JIVE Joint SVD1:

Case 3: no working memory signal right hand – other contrast in motor task

Motor rh task	Separate	JIVE	
		Joint	Individual
SVD1 Image			
SVD2 Image			
SVD3 Image			

Summary

- Illustrated JIVE using 3 scenarios varying in joint variation
- Cognition and in-task performance reveal working memory activation
- JIVE provides new insights: reveals variation unique to a dataset
- Focus on row subspace great when $d_1 \gg d_2$

Discussion

- We focused on joint and individual loadings
- Did not discuss subject scores
- Analyzed population of healthy young adults
- Subject scores interesting in heterogeneous populations:
 - cancer studies: clustering as in PCA
- Future research:
 - As alternative to contrasts, JIVE with 2-bk and 0-bk, look if working memory in *individual*
 - Alternatives to variance: NGCA for multiple blocks

Acknowledgments

- Tim Johnson, Martin Lindquist, and the Big Data working group at SAMSI.
- Qing Feng for providing JIVE Matlab code.
- B. Risk partly supported by NSF grant DMS-1127914 to SAMSI.
- HCP WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657).