

Impacts of multiband acceleration factors on sensitivity and specificity

Benjamin Risk

brisk@emory.edu

SAMSI, Research Triangle Park, NC

Dept. of Biostatistics, University of North Carolina, Chapel Hill, NC

Dept. of Biostatistics & Bioinformatics, Emory University, Atlanta, GA

Overview

- 1. Costs and Benefits Overview
- 2. Calculating Aliasing Patterns
- 3. Simulation Study
- 4. Unprocessed HCP Data

1. COSTS AND BENEFITS OVERVIEW

Reconstruction error

Xu et al 2013 HCP Consortium:

Note: MB factor = SMS factor

Costs

- In acquisition literature, reconstruction error quantified using
 - G-factor: noise amplification (variance)
 - L-factor: signal leakage (bias)
- Here, we focus on test statistics.
- Two reconstruction methods:
 - -Slice-GRAPPA (Setsompop 2012)
 - –Split slice-GRAPPA (Cauley 2014) = Leak Block

Slice leakage

Benefits in fMRI

- SMS decreases TR
- Benefits "indirect" because power in BOLD < 0.2 Hz (Nyquist 2.5 s)
- Boosts effective sample size decreases SE
- Improve ability to separate physiological noise – ICA, lo-pass filtering

Higher test statistics

- Higher test statistics and/or larger number of activated voxels:
 - -Task fMRI:
 - Chen et al 2015
 - Boyacioglu et al 2015
 - Demetriou et al 2015
 - Todd et al 2016, 2017
 - –Resting state fMRI:
 - Feinberg et al 2010
 - Preibisch et al 2015

Todd et al 2016

Motor Cortex Visual Cortex Cerebellum Slice-GRAPPA 8000 8000 Split Slice-GRAPPA Number of Activated Voxels
0000
0000 Number of Activated Voxels 6000 4000 2000 2 4 MB Factor 2 4 MB Factor 2 4 MB Factor C В **Motor Cortex** Visual Cortex Cerebellum

N. Todd et al. / Neurolmage 124 (2016) 32-42

8000

6000

4000

2000

Number of Activated Voxels

A

37

2. CALCULATING ALIASING PATTERNS

Example SMS = 2

Ex: SMS = 8, FOV/3

- Suppose 72 slices, SMS = 8
- 72 / 8 = 9 packets
 - Slice 1 = packet 1
 - **—** ...
 - Slice 9 = packet 9
 - Slice 10 = packet 1...
- Packet 1: Slices 1, 10, 19, 28, 37, 46, 55, 64
- FOV/3 with 90: (1,1,1) aliased to (1,31,10), (1,61,19), (1,1,28), (1,31,37), (1,61,46), (1,1,55), (1,31,64)

LH Motor Cortex

Regional aliasing

Regional aliasing

- Realized leakage has stochastic component due to measurement error
- B0 inhomogeneities and gradient non-linearities
- Motion correction
- Registration to MNI
- Predicting aliasing in processed data and group analyses is difficult

Joint work:

Mary Kociuba, University of Washington, Seattle, WA Dan Rowe, Marquette University, Milwaukee, WI

3. SIMULATION STUDY: SENSITIVITY & SPECIFICITY

Quantify tradeoffs

- Larger test statistics in presence of bias = false positives
- Bias from signal leakage:
 - Slice leakage spurious regions
 - Smoothing leakage overestimate region with true activation
- Smoothing interact with SMS?

Simulation Design

- Sensitivity: correctly reject null hypothesis (1 – false negatives)
- Specificity: correctly fail to reject null hypothesis (1 – false positives)
- Factorial design motivated by HCP motor task:
 - FOV/3 or 0
 - SMS: 1, 4, 8
 - Scan duration: 120 s, 240 s, 480 s
 - 0 versus 6 mm FWHM smoothing

Slice-GRAPPA

0.005-

0.000

Scale Factor

0.005

0.000

Scale Factor

0.005 -

0.000 -

Scale Factor

Slice-GRAPPA

Slice-GRAPPA %change=1.3, 240s lter 1

CBIS
Center for Biomedical Imaging Statistics

Slice-GRAPPA %change=7.3, 480s

Split SG %change=7.3, 480s

Joint work:

Mary Kociuba, University of Washington, Seattle, WA Dan Rowe, Marquette University, Milwaukee, WI

4. UNPROCESSED HCP DATA

HCP task fMRI

- SMS = 8
- TR = 0.72 s
- Blipped-CAIPI: FOV/3
- Slice-GRAPPA reconstruction
- 2 runs: RL PE direction, LR
- Voxel size: 2 x 2 x 2
- Single-subject analyses motor task

HCP leakage?

Example subject: LR predict, LR PE

Example subject: RL predict, LR PE

 Analysis for both LR and RL runs, combined results

	$P_{matched}$	$P_{mismatched}$	Difference
1	0.023	0.020	0.003
2	0.027	0.017	0.010
3	0.066	0.050	0.016
4	0.050	0.050	0.000
5	0.036	0.026	0.009
6	0.014	0.009	0.005
7	0.014	0.014	0.000
8	0.028	0.027	0.001
9	0.041	0.049	-0.007
10	0.014	0.010	0.004
11	0.031	0.029	0.002
12	0.035	0.025	0.010
13	0.043	0.022	0.020
14	0.039	0.024	0.015
15	0.026	0.012	0.014
16	0.034	0.050	-0.015

Table 1: The proportion of voxels with z > 2.326 in the predicted aliased regions (matched) and in regions that are aliased using the opposite PE direction (mismatched). A larger proportion in $P_{matched}$ is considered evidence of slice leakage. One-sided Wilcoxon signed rank test: p = 0.01.

Joint work:

Mary Kociuba, University of Washington, Seattle Dan Rowe, Marquette University, Milwaukee, WI

4B. HCP DATA: NOISE AMPLIFICATION

Residual variance:

<u>ex</u> 1

Residual variance: additional examples

Discussion

- SMS can lead to higher test statistics
- SMS creates bias:
 - slice leakage
 - exacerbates smoothing leakage
- SMS improves sensitivity but decreases specificity
 - use moderate acceleration
 - minimal smoothing
- Split slice-GRAPPA dramatically decreases leakage, few costs?

Discussion, cont.

- Preprocessed HCP: expect less leakage
 - minimal smoothing and gray matter areas
- Impacts in group studies?
- Residual noise artifacts likely to persist in split slice-GRAPPA
 - impacts estimated activation regions?
- SMS continues to evolve:
 - alternative FOV shifts (e.g., incoherent aliasing Zhu 2014), reconstruction methods,
 3D acquisitions (e.g., wave-CAIPI Bilgic 2015)

Acknowledgments

- Thank you!
- Dr. Steen Moeller at CMRR UMinn
- NSF grant DMS-1127914 to SAMSI
- HCP WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.